
The Snake challenge: Sanitization algorithms under attack

Tristan Allard1, Louis Béziaud1,2 and Sébastien Gambs2

1Univ Rennes, CNRS, IRISA
2Université du Québéc à Montréal

{tristan.allard,louis.beziaud}@irisa.fr, gambs.sebastien@uqam.ca
Authors appear in alphabetical order

May 26, 2023

Abstract

Competitions and challenges have proven to be useful tools in the fields of security, cryptography or
machine learning for stimulating research as well as generating and testing open-source implementations
of state-of-the-art methods. While there were already some privacy challenges organized in the domain
of data sanitization (also called data anonymization or privacy-preserving data publishing), they have
mainly focused on the protection aspect. In this paper, we propose the Snake challenges, a series of
contests dedicated to the design of privacy attacks against data sanitization schemes. The conception
of the Snake challenges is such that they allow participants to concentrate their attacking efforts over
a small set of well-chosen sanitization schemes. In addition, the proposed structure for the challenge is
generic in the sense that the details of the contest can easily be instantiated at each edition (e.g., type
of attack, dataset used and background knowledge of the adversary). In this first edition, we propose
to focus on membership inference attacks over a set of well-known differentially-private synthetic data
generation schemes. More precisely, the design of the first edition includes an instantiation of the generic
structure, a dataset derived from the Census data, an evaluation of the success of each attack algorithm
against varying targets and background knowledge, and the technical environment for supporting the
contest. This paper describes our proposal and positions it with respect to previous privacy challenges.

1 Introduction
Competitions and challenges are commonly used both in the machine learning community – for boosting the
design and development of practical and efficient solutions to hard or new problems – and in the security
community – for training purposes or for the evaluation of existing infrastructures. In contrast, in the
privacy community, there is not a long tradition of holding such challenges. However, in recent years several
competitions focusing on data sanitization algorithms (also called data anonymization algorithms or privacy-
preserving data publishing algorithms) have been launched [2, 8, 11, 13].

Some of them, like the 2018 Differential Privacy NIST Challenge [13], have focused primarily on the
defense aspect. More precisely, their main requirements were that the proposed algorithms have to (1) meet
formal guarantees such as differential privacy, (2) achieve high utility levels on real-life cases, and (3) are
efficient enough for being run on today’s off-the-shelf computer systems. Others, like the Hide-and-Seek
challenge [8], the INSAnonym competition [2] or the PWSCUP1 [11] additionally consider attacks on the
sanitized datasets generated by the participants. More precisely, these competitions were generally composed
of two phases, in which the first one is dedicated to the design of sanitization algorithms (usually focus on
a particular type of data and use case) while the second one usually consists in attacking the data sanitized
with the algorithms developed during the first phase.

1https://www.iwsec.org/pws/2021/cup21_e.html
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Table 1: The parameters of the framework that must be instantiated in order to design an edition of the
Snake challenges.

Number of tracks The number of independent tracks of the edition being designed.

Track A track is defined by a time period, a set of sanitization algorithms, a base dataset
and a set of teams.

Team A set of individuals collaborating together under the same name and registered
to one or more tracks.

Time period For each track, the time period over which the track runs.

Base dataset For each track, the full dataset input by the sanitization algorithms (partially or
totally).

Sanitization algorithms For each track, the set of sanitization algorithms attacked.

Attack goal The objective of the attack (e.g., membership inference, reconstruction attack or
attribute inference).

Success measure For each track, the measure used for computing the score of each team.

While the sanitization phases of past challenges have been successful, in the sense that it has provided in-
sights on the privacy/utility trade-offs, lead to implementations from state-of-the-art sanitization algorithms
or even novel algorithms, the outcomes of the attack phases were usually more mitigated. For example,
the organizers of the Hide-and-Seek challenge have reported attack results equivalent to random guesses [8].
We believe that one of the main reason for this is that in order to be successful, the attack phase must
allow participants (1) to dedicate sufficient time to the design, implementation and testing of their attack
strategies and (2) to focus on a few algorithms.

In this paper, we propose a series of privacy challenges called Snake specifically tailored to attacks
against sanitization algorithms. More precisely, the general structure of the Snake challenge provides
the following salient features: it (1) concentrates the energy and expertise of participants against a small
set of carefully chosen state-of-the-art sanitization algorithms, (2) gives sufficient time to participants to
design and test carefully their attacks, (3) enables the exploration of a wide range of possible adversary
models and background knowledge and (4) complements nicely the current sanitization competitions that
focus on the sanitization part, thus resulting in a complete defense-attack pipeline. The first edition of
the challenge focuses on the Membership Inference Attack setting [5, 14] over tabular data synthetically
generated while satisfying differential privacy [3]. The adversarial background knowledge consists in the
record(s) of the target(s) of the attack. Further editions will showcase other inference attacks, adversarial
background knowledge, privacy models and sanitization algorithms.

The outline of this report is as follows. First in Section 2, we describe the generic structure of the Snake
challenges. Then in Section 3, we instantiate it by providing the details of the first edition. Afterwards,
we position the Snake challenges in Section 4 with respect to previous sanitization competitions before
concluding in Section 5.

2 General structure of the Snake challenges
Basically, an edition of the Snake series of challenges consists in a set of independent tracks. Each of these
tracks focuses on a set of sanitization algorithms under attack. Each of this track also relies on a base dataset
from which private datasets are extracted. In addition, a set of competing teams registers to a track and
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Table 2: Parameters of the first edition of the Snake challenges.

Tracks 1. Main

Team To be defined at runtime.

Base dataset The CPS (Current Population Survey) data projected over a subset of dimensions
(tabular data). Each execution of a sanitization algorithm takes as input a private
dataset consisting of random samples from the base dataset.

Targets Each target consists in the set of records of a random household containing at
least 5 individuals2.

Sanitization algorithms PrivBayes [16], MST [9], PATE-GAN [7].

Attack goal Membership inference.

Success measure For each team, number of combinations of competition parameters (sanitization
algorithm, privacy parameter) on which the given team obtains the best mem-
bership advantage [15].

afterwards are ranked based on a success measure on the subset of algorithms they attack. The success
measure typically reflects the strength of the attack. The time period for conducting a track must be long
enough for letting each team explore, design and implement at least one attack.

The instantiation of the above framework (e.g., number of tracks, details of the success measure, al-
gorithms under attack–see Table 1) might vary along tracks and editions, allowing to implement it over
a diversity of settings. For a concrete illustration, we detail afterwards the design of the first edition in
Section 3.

3 The Snake challenge – 1st edition

3.1 General organization
Table 2 summarizes the parameters of Snake 1 while Figure 1 gives an overview of the complete workflow.

Structure. The first edition of the Snake challenge, called Snake1 below, is organized jointly with
APVP’233. More precisely, the competition starts end of May and terminates end of August, with an
early feedback and a discussion session during APVP’23 in mid-june. Remote participation will also be
possible.

Expected outcomes. To favor both the reproducibility and the accountability of the results of Snake
1, (1) the description of the attacks designed along Snake 1 and their code will be published online under
an open-source license (i.e., approved by the Open Source Initiative4), and (2) complete information about
Snake 1 settings (i.e., teams and scores) will also be made public. The choice of the exact open source
license of each attack source code is left to the team having written the code.

3https://apvp23.sciencesconf.org/
4https://opensource.org/
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Figure 1: Overview of the Snake 1 workflow for a single parameterized algorithm
.

3.2 Description of the participants’ tasks
Attack algorithm. Snake 1 focuses on membership inference attacks on differentially-private synthetic
data generation algorithms. More precisely, each team has to design an attack algorithm as follows.

Input We provide to the attack algorithms the following information:

• The synthetic dataset generated by an execution of the targeted sanitization algorithm over a
private dataset.

• The base dataset from which the private dataset is sampled.
• The parameters of the execution of the sanitization algorithm attacked.

Output The output of the attack algorithm is a single real ∈ [0, 1] indicating the predicted probability of
each target being within the private dataset or not.

We detail below the computation of the private datasets and of the targets, the sanitization algorithms
under attack and the success metric of attacks.

Base dataset and private datasets. Snake 1 makes use of the publicly available EPI CPS Basic
Monthly data provided by the Economic Policy Institute [6]. The CPS dataset is divided in years in which
a yearly dataset contains more than 106 records and 125 columns5. A record contains information about a
single individual in a household. However, several individuals from the same household can be pooled and
in addition any household can join the CPS at any given month and is interviewed (1) during 4 consecutive
months for the given year, and (2) the same 4 consecutive months during the following year.

Our base dataset is built as follows. We concatenate the years 2005 to 20227. For each household, we keep
only the month8 in which it possesses the most records (i.e., individuals). We end up with each household
being unique by year and month. Afterwards, we drop all rows that have at least one missing value. This
results in a dataset that includes 77111 households and 201279 rows (i.e., individuals). Finally, we project
the dataset on 15 attributes (see Table 3), which results in what is called the base dataset.

5The description is available on the EPI Microdata Extracts website6
7This selection is motivated by the availability and consistency of the features.
8We make the assumption that households’ identifiers are linkable across months.
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Table 3: Attributes’ description of the base dataset
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Numerical X X X
Ordinal X X X X X
Unique 65 16 5 2 2 12 6 16 8 9 51 129 15 16 10
Range [16, 80] [0, 11] [0, 198]

From this base dataset, we generate one private dataset for each parameterized sanitization algorithm
attacked. More precisely, each private dataset is obtained by combining a random subset of targets (i.e., the
members) with 104 individuals sampled uniformly at random from the base data.

Targets and background knowledge. In Snake 1, any household that contains at least 5 individuals
might be a target, with the target consisting of the full set of records of the household. The set of targets
given to a team for launching its membership inference attack on a given sanitization algorithm are extracted
from the corresponding private dataset.

Snake 1 considers the following background knowledge about each target. The adversary knows (1) the
exact records of the household targeted, and (2) the full base dataset9. Additionally, following Kerckhoffs’s
principle, the adversary is also given the information about the sanitization algorithm targeted as well as the
parameters used for the executions and has access to its implementation. However, the randomness generated
internally during the execution of the algorithm is unknown to the adversary (e.g., for the generation of the
Laplace noise).

Sanitization algorithms under attacks. The sanitization algorithms under attack during Snake 1

are differentially-private synthetic data generation algorithms. More precisely, we have selected a set of
algorithms according to the following two criteria: technical soundness assessed by a rigorous peer-selection
process (e.g., published at top-tier conferences or winner of a dedicated competition) and available open-
source implementation. In particular, we have used the implementation available in the reprosyn package10.
Except for parameters related to differential privacy, we use the default values set in their implementations.

The PrivBayes algorithm [16] generates synthetic data by capturing the underlying distribution of the
private data through a specific Bayesian network while satisfying ϵ-differential privacy. PrivBayes is
divided in two main steps, with half of the privacy budget being used for each step. First, it greedily
constructs a low-degree Bayesian network by selecting the child/parents pairs maximizing the mutual
information based on the Exponential mechanism[3]. Second, it computes the conditional distributions
of the resulting network, perturbed by the Laplace mechanism. The synthetic data is finally generated
by sampling iteratively from the conditional distributions, which is a form of post-processing preserving
the differential privacy guarantees.

The MST algorithm [9] is a generalization of the NIST-MST algorithm, which has won the 2018 NIST
Differential Privacy Synthetic Data challenge11. It generates synthetic data by perturbing the marginals
that capture the data distribution through the Gaussian mechanism and by post-processing them
through the Private-PGM algorithm [10]. The base marginals can be obtained by one of the three
following methods: given by a domain expert, computed from a public dataset that follows a data
distribution similar to the private dataset’s distribution or computed from the private dataset while

9It gives teams the knowledge of the population distribution commonly assumed in membership inference attacks.
10https://github.com/alan-turing-institute/reprosyn
11https://www.nist.gov/ctl/pscr/open-innovation-prize-challenges/past-prize-challenges/

2018-differential-privacy-synthetic
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satisfying differential privacy. Afterwards, Private-PGM takes as input the perturbed marginals and
computes a data distribution that would have produced close marginals. More precisely, it represents
the problem as an optimization problem, the distribution searched as a graphical model, and thus
solves the problem of finding the optimal graphical model. Synthetic data can then be generated based
on the model found. The MST algorithm has been demonstrated to satisfy (ϵ, δ)-differential privacy.

The PATE-GAN algorithm [7] is an extension of generative adversarial networks [4] (GAN) based on the
private aggregation of teacher ensembles framework [12] (PATE). Each PATE-GAN iteration consists in
three phases. First, PATE-GAN trains k classifiers (called teachers) for distinguishing private real data
from generated synthetic data. Each teacher is fed with samples from the real dataset (one partition
per teacher) and from a generator (uniform distribution at first) and learns to distinguish between the
two. Second, PATE-GAN builds on the k teachers for training the student (a binary classifier as well)
and the generator in an adversarial manner. The generator produces a set of samples but the teachers
are now used for voting, for each sample, whether it is realistic or fake. The number of votes for each
label (realistic or fake) is perturbed by the Laplace mechanism and the final label of a sample is the
majority label. The student learns to distinguish between real and fake samples based on the resulting
dataset. Third, the generator outputs a final set of samples and is penalized according to the success of
the student in distinguishing realistic samples from fake samples. PATE-GAN iterates until the privacy
budget is exhausted. This method has been shown to satisfy (ϵ, δ)-differential privacy.

Success measure. The success of a team is computed by first measuring the successes of its attack on
each parameterized algorithm attacked (e.g., MST parameterized by (ϵ = 1.0, δ = 10−5)) and second by
aggregating the success measures in a single final score. More precisely, the success of a given attack for a
given triple is evaluated based on the well-known membership advantage measure [15] (see Definition 3.2).
Membership advantage is computed for each attack through the execution of a membership experiment (see
Experiment 3.2). A single membership experiment requires to estimate the success probabilities of the attack
and consequently to run the same attack r times. The parameter r must be at the same time large enough
for obtaining a sufficiently stable estimation and small enough for being practical (e.g., r = 100).

Experiment (Membership experiment ExpM(A, A, n,D), from [15]). Let A be an adversary, A be a learn-
ing algorithm, n be a positive integer, and D be a distribution over data points (x, y). The membership
experiment proceeds as follows:

1. Sample S ∼ Dn, and let AS = A(S).

2. Choose b← {0, 1} uniformly at random.

3. Draw z ∼ S if b = 0, or z ∼ D if b = 1

4. ExpM(A, A, n,D) is 1 if A(z,AS , n,D) = b and 0 otherwise. A must output either 0 or 1.

Definition (Membership advantage, from [15]). The membership advantage of A is defined as

AdvM(A, A, n,D) = 2 Pr[ExpM(A, A, n,D) = 1]− 1,

in which the probabilities are taken over the coin flips of A, the random choices of S and b, and the random
data point z ∼ S or z ∼ D.

Equivalently, the right-hand side can be expressed as the difference between A’s true and false positive
rates:

AdvM(A, A, n,D) = Pr[A = 0|b = 0]− Pr[A = 0|b = 1].

At the end of each track, each team obtains a set of success measures, one per parameterized algorithm
attacked. Teams cannot be ranked through a direct comparison of their success measures because two success
measures are comparable only if they were obtained on the same parameterized algorithm. As a result, we
count for each team the number of times its success measure is higher than the success measures of all the
other teams’ on the same algorithm and the same privacy parameters, and we rank the teams accordingly.
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3.3 Technical environment
Execution environment. The design, coding, and executions of attacks are performed locally by each
team with its own resources. As a result, there is no restriction on the computing environment used to develop
the attacks and the choice of the programming language and the available resources are unconstrained. Note
however that we use and provide the Python environment used to prepare the tasks. To compute the success
measures, we request from each team a probability vector per membership experiment (i.e., its guesses).
The success measures of the teams are computed based on the probability vectors received.

Competitor’s kit and submissions. Prior to the competition, a competitor’s kit is made available for
each team. The kit contains all the necessary resources for each team (e.g., the data schema, the base dataset,
the private datasets, the targets, scripts for computing the success measure and the final score). We use
the CodaBench platform12 for hosting the kits, receiving the teams’ submissions, and ranking them. Public
data [1] is available in a dedicated repository13. All teams are required to have an account on CodaBench
for participating to Snake 1.

Communications between organizers and competitors. The official web site14 hosts the call for
participation, the registration form, the news and the final outcomes of the competition. Besides this website,
dedicated mailing-lists or other communication channels might be proposed to participants (e.g., forums or
chats).

Reproducibility. The random seed used to sample data (train and targets) is saved for future repro-
ducibility. The code used to build the whole challenge (tasks and CodaBench bundle) is available in the
snake1 repository15.

Verifiability. Each task is distributed along with a hash of all its files (public and private). Once private
data is shared (after the competition), this allows participants to verify that their submission was evaluated
against the correct data.

4 Overview of related challenges
The closest related challenges to ours are the Hide & Seek privacy challenge [8] from the Van Der Schaar
laboratory, the INSAnonym competition [2], the PWSCup [11] series of competitions, as well as the Microsoft
Membership Inference Competition (MICO)16. The three former challenges differ on the rules, the data, and
the tasks they propose, but they follow the same two-phase structure: a sanitization phase during which
the participants implement a sanitization algorithm and execute it on the given dataset and an attack phase
during which the sanitization algorithms are attacked. The attack phase of these competitions is often
short (either by design or in practice) and the algorithms attacked are chosen by the participants. The
recent MICO Competition focuses on membership inference however it considers classification models. The
Snake challenges aim at strengthening the attack phase. First, the sanitization algorithms attacked are
chosen from the literature and/or from the latest sanitization challenges (e.g., the NIST differential privacy
challenges). Second, the number of algorithms under attack proposed to participants can be chosen in order
to remain small (notion of track). This helps participants to focus on their attack algorithm and contributes
to a better coverage of the sanitization algorithms. Third, the participants can be given a large amount of
time to design and implement their attack algorithms. Fourth, by focusing on the attacks and controlling

12https://www.codabench.org/
13https://github.com/snake-challenge/snake-cps
14https://snake-challenge.github.io/
15https://github.com/snake-challenge/snake1
16https://github.com/microsoft/MICO
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precisely the algorithms being attacked, the Snake challenge gives the opportunity to stress-test state-of-
the-art sanitization algorithms systematically (e.g., privacy parameters). In particular, we believe that the
Snake challenges complement nicely the other challenges dedicated to designing sanitization algorithms
(e.g., the NIST differential privacy challenges).

5 Conclusion
We propose the Snake challenges, a series of contests designed for stress-testing sanitization algorithms.
The general structure of the Snake challenges is designed to concentrate the workforce of the participants
on attacking a few selected algorithms from the state-of-the-art. Thus, we believe that it complements
nicely the current sanitization competitions that mostly focus on the defense part. The first edition, held
jointly with APVP’23, will focus on membership inference attacks over differentially-private synthetic data
generation algorithms, a timely topic. All outcomes (code, algorithms, success measures) will be made public
following open-source principles. Overall, we hope that the Snake challenges can help gain understanding
of the empirical privacy guarantees of sanitization algorithms and of their parameters and pave the way to
a greater democratization of sanitization algorithms providing strong privacy guarantees.
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